AR No. 3

Insulate Cookers

Recommended Action

Insulate the two can cookers with two-inch fiberglass batted insulation covered with a foil jacket for protection.

Assessment Recommendation Summary				
Energy	Cost	Implementation	Payback	
$(10^6 Btu)$	Savings	Cost	(years)	
116	\$540	\$345	0.6	

Background

Currently the two can cookers have no insulation and are releasing a large amount of heat into the plant. By adding insulation the majority of this heat will be contained and result in a reasonable savings.

Anticipated Savings

The existing energy loss (E_0) can be found from:

E ₀	=	$[U_0 x ((A_{C1} + A_{C2}) x (T_S - T_A))] x H$
	=	$[2 \text{ Btu/ht-}^{\circ}\text{F-ft}^2 x ((245 + 180) \text{ ft}^2 x (180-10) ^{\circ}\text{F})] x 1,344 \text{ hr/yr}$
	=	$125.7 \ge 10^6 \text{ Btu/yr}$

where

U_0	=	Existing Heat Transfer Coefficient: 2 Btu/hr-°F-ft
A_{C1}	=	Area of Larger Cooker: 245 ft ²
A_{C2}	=	Area of Smaller Cooker: 180 ft ²
Ts	=	Surface Temperature of the Tanks: 180 °F
T _A	=	Ambient Temperature: 70 °F
Н	=	Annual Operating Hours: 1,344 hr/yr

The Energy loss after 2 inches of fiberglass batted insulation and a foil jacket (E_1) can be found from:

$$E_1 = [U_1 x ((A_{C1} + A_{C2}) x (T_{S-}T_A))] x H$$

= [0.16 Btu/hr-°F-ft² x ((245 +180) ft² x (180-70) °F)] x 1,344 hr/yr
= 10.1 x 10⁶ Btu/yr

where

=	Proposed Heat Transfer Coefficient
=	$1/(1/U_0 + 1/R)$
=	1/(1/2 + 1/0.17)
=	0.16 Btu/hr-°F-ft ²
=	Insulation R-Value
=	Thermal Conduction/Inches of Insulation
=	$(0.34 \text{ Btu-in/ft}^2\text{-hr-}^{\circ}\text{F})/2\text{-in})$
=	0.16 Btu/ft ² -hr- ^o F
	= = = = = =

The energy savings (ES) can be found from:

ES	=	$(E_0 - E_1)$
	=	$(125.7 - 10.1) \ge 10^6$ Btu/yr
	=	115.6 x 10 ⁶ Btu/yr

The cost savings (CS) can be found from:

$$CS = ES x $4.6924 / 10^{6} Btu$$

= 115.6 x 10⁶ Btu/yr x \$4.6924 / 10⁶ Btu
= \$540/yr

Savings Summary				
			Energy	Cost
Source	Quantity	Units	10 ⁶ Btu	\$
Natural Gas	1,156	Therms	116	\$540

Implementation Cost

In addition to the two inches of fiberglass batted insulation, a foil jacket will be necessary for protection. The cost of the insulation and the jacket used below include installation. The implementation cost (IC) can be found from:

IC =
$$(A_{C1} + A_{C2}) \times [(Insulation Cost) + (Cost of Jacket)]$$

= $(245 + 180) \text{ ft}^2 \times [(\$0.50/\text{ft}^2) + (\$0.05/\text{ft}^2)]$
= $\$345$

The savings will pay for the implementation cost in 0.6 years.